
Applied Energy 97 (2012) 355–364
Contents lists available at SciVerse ScienceDirect

Applied Energy

journal homepage: www.elsevier .com/locate /apenergy
Predicted vs. actual energy performance of non-domestic buildings: Using
post-occupancy evaluation data to reduce the performance gap

Anna Carolina Menezes a,b,⇑, Andrew Cripps a, Dino Bouchlaghem b, Richard Buswell b

a AECOM, Building Engineering, MidCity Place, 71 High Holborn, London WC1V 6QS, UK
b Loughborough University, Centre for Innovative and Collaborative Construction Engineering, Loughborough, Leicestershire LE11 3TU, UK

a r t i c l e i n f o a b s t r a c t
Article history:
Received 21 July 2011
Received in revised form 21 November 2011
Accepted 24 November 2011
Available online 20 December 2011

Keywords:
Building energy modelling
Energy benchmarks
Energy performance
Performance gap
Post-occupancy evaluation
0306-2619/$ - see front matter � 2011 Elsevier Ltd. A
doi:10.1016/j.apenergy.2011.11.075

⇑ Corresponding author at: AECOM, Building Engine
Holborn, London WC1V 6QS, UK. Tel.: +44 (0) 2031
7775 611020.

E-mail address: Anna.Menezes@aecom.com (A.C. M
With the increasing demand for more energy efficient buildings, the construction industry is faced with
the challenge to ensure that the energy performance predicted during the design stage is achieved once a
building is in use. There is, however, significant evidence to suggest that buildings are not performing as
well as expected and initiatives such as PROBE and CarbonBuzz aim to illustrate the extent of this so
called ‘performance gap’. This paper discusses the underlying causes of discrepancies between energy
modelling predictions and in-use performance of occupied buildings (after the twelve month liability
period). Many of the causal factors relate to the use of unrealistic input parameters regarding occupancy
behaviour and facilities management in building energy models. In turn, this is associated with the lack of
feedback to designers once a building has been constructed and occupied.

The paper aims to demonstrate how knowledge acquired from Post-Occupancy Evaluation (POE) can be
used to produce more accurate energy performance models. A case study focused specifically on lighting,
small power and catering equipment in a high density office building is analysed and presented. Results
show that by combining monitoring data with predictive energy modelling, it was possible to increase
the accuracy of the model to within 3% of actual electricity consumption values. Future work will seek
to use detailed POE data to develop a set of evidence based benchmarks for energy consumption in office
buildings. It is envisioned that these benchmarks will inform designers on the impact of occupancy and
management on the actual energy consumption of buildings. Moreover, it should enable the use of more
realistic input parameters in energy models, bringing the predicted figures closer to reality.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

There is extensive evidence to suggest that buildings usually
do not perform as well as predicted [1–4]. This is often attributed
to the lack of feedback to designers after handover, inhibiting
improvements both to existing buildings and future designs.
The practice of Post-Occupancy Evaluation (POE) aims to address
this issue by evaluating the performance of a building after it has
been built and occupied to provide designers with valuable feed-
back on its actual performance in-use. This paper aims to demon-
strate how knowledge acquired from POE can be used to produce
more accurate energy performance models. The study focuses on
electricity consumption due to lighting, small power and catering
equipment, rather than thermal loads.
ll rights reserved.

ering, MidCity Place, 71 High
702738 (O), mobile: +44 (0)

enezes).
In recent years, Building Regulations in England and Wales
have become increasingly stringent, demanding higher standards
of energy performance. This can be linked to the implementation
of the European Energy Performance of Buildings Directive (EBPD)
as well as the Government’s legally binding commitment to re-
duce UK carbon dioxide emissions by 80% by 2050 in relation
to the 1990 baseline [5]. As a result, all new buildings must
achieve a Building Energy Rating (BER) lower than the prescribed
Target Energy Rating (TER) for the specific building type, calcu-
lated using a Simplified Building Energy Model (SBEM). However,
this methodology does not aim to predict the actual energy
consumption of a building, as its purpose is solely to ensure
compliance with Building Regulations. Instead, detailed Dynamic
Simulation Models (DSMs) can be used to obtain predictions of
in-use energy performance. DSMs are more suited to the func-
tional and volumetric complexities of non-domestic buildings as
they allow for more detailed input options whilst also containing
extensive databases for materials and systems [6]. Despite these
and many other added capabilities, there is still a significant
gap between predicted and actual energy consumption in
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non-domestic buildings [2]. This discrepancy is commonly re-
ferred to as the ‘performance gap’.
1.1. The performance gap

The PROBE studies (Post-occupancy Review of Buildings and
their Engineering) investigated the performance of 23 buildings
previously featured as ‘exemplar designs’ in the Building Services
Journal (BSJ) [3,4]. The research project ran from 1995 to 2002,
highlighting the lack in feedback regarding the actual performance
of buildings. It also brought to light the so called ‘performance gap’,
suggesting that actual energy consumption in buildings will usu-
ally be twice as much as predicted [4]. More recently, initiatives
such as the Low Carbon Buildings Accelerator and the Low Carbon
Buildings Programme, have aimed to provide feedback regarding
the performance of buildings in-use [7]. Findings from both these
studies have been published by the Carbon Trust in a series of re-
ports, with one dedicated solely to the performance gap [8]. The re-
port entitled ‘Closing the Gap’ introduces the underlying causes of
the performance gap, highlighting that design predictions for reg-
ulatory compliance do not account for all energy uses in buildings.
Data from five case study buildings is used to illustrate the discrep-
ancies between actual regulated energy consumption and model-
ling output used for compliance with Building Regulations.
Results demonstrate that the actual regulated consumption can
be five times higher than predicted [8].

In 2008, the Royal Institute of British Architects (RIBA) and the
Chartered Institution of Building Services Engineers (CIBSE)
launched CarbonBuzz, a free online platform allowing practices
to share and publish building energy consumption data anony-
mously [9]. It enables designers to compare predicted and actual
energy use for their projects, whilst also allowing for comparison
against benchmarks and data supplied by other participating prac-
tices. Fig. 1 illustrates the predicted and actual electricity con-
sumption in three building sectors: schools, general offices and
university buildings [10]. The graph depicts the median predicted
and median consumption for the buildings within the database,
which are assumed to be broadly representative of each sector.
As shown, the measured electricity demands are approximately
60–70% higher than predicted in both schools and general offices,
and over 85% higher than predicted in university campuses.
1.2. Sources of discrepancy

Results from the PROBE studies suggest that such discrepancies
transcend the expected shortcomings of current modelling pro-
grams; being a result of poor assumptions, as well as a lack of mon-
itoring following construction [3,4]. Table 1 summarises the main
Fig. 1. CarbonBuzz median electricity consumption per-sector – predicted vs.
actual [10].
causes of discrepancies between predicted and actual energy per-
formance in buildings.

As shown, the causal factors relate to both predictive and in-use
performance, implying that current predictions tend to be unreal-
istically low whilst actual energy performance is usually unneces-
sarily high. However, the overall problem could be interpreted as
an inability of current modelling methods to represent realistic
use and operation of buildings. This in turn can be associated with
the lack of feedback regarding actual use and operation of build-
ings as well as the resulting energy consumption. Currently, there
is a significant lack of information concerning the actual energy
performance of our existing building stock [11]. A continued ab-
sence of such data is likely to lead to a progressive widening of
the gap between theory and practice and a failure to achieve stra-
tegic goals [12].

Recent developments in the field of thermal modelling have re-
sulted in increasingly complex simulation software based on calcu-
lations of dynamic heat transfer. In addition, stringent procedures
are being implemented to ensure the validity of a range of model-
ling programs [13]. As a result, the impact of modelling tools on the
overall discrepancy between predicted and actual performance is
consistently being diminished. Meanwhile, some issues with built
quality are slowly being tackled by the construction industry,
encouraging more airtight buildings and better construction tech-
niques. Extensive research on the actual performance of built ele-
ments is also being conducted, whilst most modelling software
now allow for assumptions regarding the built quality of specific
building elements.

Despite these improvements, current simulation tools do not
accurately model the impact of occupants and management on
the energy performance of buildings. This is usually attributed to
the use of inadequate assumptions at design stage, more so than
an inability of the modelling tools themselves. As such, there is
scope for further investigation into the actual use of buildings,
focusing on occupancy and management behaviour, as well as
their impact on unregulated energy consumption. This can be
achieved through the practice of Post-Occupancy Evaluation (POE).

1.3. Post-occupancy evaluation

Post-Occupancy Evaluation (POE) is a structured process of
evaluating the performance of a building after it has been built
and occupied. This is achieved through systematic data collection,
analysis and comparison with explicitly stated performance crite-
ria, providing designers with valuable information regarding the
in-use performance of their designs [16].

The scope of POE can be divided into three strands [17]:

� Feedback: A management aid mechanism aimed at measuring
building performance mostly as an indicator of business pro-
ductivity and organisational efficiency.
� Feed-forward: Aims at improving building procurement

through the use of acquired data as feedback to the design team
and future briefings.
� Benchmarking: Aims at measuring progress striving towards

increasingly sustainable construction and stricter targets of
energy consumption.

POE can take several approaches, varying from highly techno-
logical methodologies involving hard data, to socio-psychological
interests where more subjective parameters are used to evaluate
the performance of a building. Hence, the method to be undertaken
in a POE is usually defined by the objectives being pursued and the
areas of interest to the stakeholder. Seeing as POE concerns the
analysis of individual buildings, the methods vary in scale, type, le-
vel of interactivity and suitability for specific projects [18]. As a



Table 1
Causes of discrepancies between predicted and actual energy performance.

Causal factors

Predicted performance Design assumptions
The input of data into a building energy model relies significantly on assumptions, which often go unchallenged. These are usually made at
design stage when many aspects of the building’s function and use are unknown or uncertain. This can result in oversimplified and/or
unrealistic inputs regarding the built quality and fabric performance, occupancy patterns and behaviour as well as the management and
control of the building and its services [13]

Modelling tools
Building energy modelling software can contain fundamental errors embedded in the equations used by the program, leading to inaccuracies
in the predictions. This should be avoided by choosing modelling tools that have been appropriately validated according to the procedures
defined by CIBSE TM33 [14]. The choice of software should also consider the specific type of building being modelled and should allow for
adequate representation of the building itself as well as its use and operation. Restrictive or oversimplified tools can result in models that are
unrepresentative of reality [13]

Actual performance Management and controls
Facilities managers (FM) have control over central plant equipment, accounting for a great portion of the energy consumption in a building
(especially in highly automated buildings). Good management and controls can result in an efficient operation of the building services whilst
inappropriate strategies can result in unnecessary waste of energy [4]. Frequent energy audits as well as re-commissioning exercises can help
maximise the efficiency of building services, avoiding unnecessary energy waste [15]

Occupancy behaviour
Building occupants do not always have direct control over building services such as heating and cooling, yet even in highly automated
buildings, occupants can affect their energy consumption by influencing the internal conditions (e.g. opening windows, blocking air inlets/
outlets, etc.) [1]. Moreover, occupants have control over various energy consuming equipment and appliances, commonly referred to as
‘unregulated loads’ (i.e. not controlled by Building Regulations)

Built quality
The in-use energy performance of a building is affected by the quality of its construction. Issues such as gaps in the insulation and thermal
bridging are common, but are rarely considered in the predictions of energy consumption. Moreover, changing requests from clients and/or
value engineering exercises can result in significant deviations from what was originally specified [2]. Yet these alterations are rarely fed back
into the energy model

A.C. Menezes et al. / Applied Energy 97 (2012) 355–364 357
consequence, a vast number of POE methods and techniques are
available worldwide, allowing for an array of different evaluations
to be performed in numerous types of buildings.

One of the most widely recognised tools for evaluating the en-
ergy performance of buildings in the UK is the Energy Assessment
and Reporting Methodology (EARM). Originally developed for the
PROBE studies, it was later published by CIBSE as a technical mem-
orandum (CIBSE TM22). The document describes a method for
assessing the energy performance of an occupied building based
on metered energy use, and includes a software implementation
of the method. It can be used to identify poorly performing build-
ings and systems, indicating the causes of poor performance and
benchmarking procedures [19]. Fig. 2 illustrates the underlying
structure of the TM22 methodology, depicting the breakdown of
energy consumption by end-uses (such as lighting and ventilation)
Fig. 2. TM22 ‘Energy Tree Diagram’ illustrat
whilst highlighting the impact of low-level factors such as hours of
use and equipment efficiency.

The first edition of TM22, published in 1999, consisted of 3
stages:

� Stage 1: A quick assessment of the energy consumption, break-
ing it down into use per unit floor area and can be carried out by
in-house resources. Information required includes description
of the building, floor area and annual energy consumption
records.
� Stage 2: A more detailed assessment of the energy consumption

including special energy uses or occupancy and can usually be
carried out in-house. Information required includes details of
building occupancy and usage as well as any special or unusual
uses.
ing the breakdown of energy use [19].



Fig. 3. Metering strategy for the supply of gas and electricity to the building.
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� Stage 3: A full understanding of the performance of the building
and its systems, and will usually require a specialist to carry out
the assessment. Required information includes building opera-
tion and maintenance manuals as well as details of building
occupancy, use and cleaning, plant operation procedures and
schedules.

In 2006, a second edition of the TM22 was published, updating
the previous edition by describing procedures for compliance with
emerging energy performance legislation [20]. It also included
treatment of on-site energy generation and renewable energy
sources. Overall, it provided a simpler and more effective method
for energy assessment and reporting, whilst keeping up to date
with current developments in the construction industry. An up-
dated version of TM22 is currently being developed and will be
used as a guidance framework for the Technology Strategy Board’s
Building Performance Evaluation call [21]. This government-
funded programme is anticipated to be the largest POE study ever
to be conducted in the UK, evaluating the in-use performance of
both domestic and non-domestic buildings. One of the key objec-
tives of the programme is to assemble a substantial body of data
for a variety of building types, aiming to draw conclusions on the
in-use performance of various design strategies. These will be dis-
seminated across the industry to enable improvements in the per-
formance of new and refurbished buildings through better design,
delivery and operation.
2. Methodology

Taking a case study approach, this paper analyses the energy
performance of an office building in central London. The assess-
ment was guided by the TM22 methodology, followed by in-depth
monitoring of the electricity consumption for lighting, small power
and catering equipment. Monitoring of occupancy patterns were
also conducted via half-hourly walkthrough inspections. Results
from the monitoring exercise were then fed into energy models,
aiming to produce more accurate predictions of energy consump-
tion. These focused solely on tenant electricity consumption,
excluding all gas usage as well as electricity consumption for air
conditioning, ventilation, lifts, water heating and circulation, as
well as lighting in communal areas.
2.1. Building description

The selected building accommodates the offices of four different
companies throughout its seven floors and basement. It includes an
atrium that extends to all floors (except the basement). Each floor
comprises a main open-plan office space with a treated floor area
of approximately 2000 m2. The ground floor houses a large recep-
tion area and the basement houses meeting rooms and cellular
offices. The building is fully air-conditioned, three rooftop air-
handling units (AHUs) provide heating/cooling as well as fresh
air to all floors and atrium. A separate system provides heating
for the basement, whilst fan coil units (FCUs) provide cooling to
the meeting rooms and small individual offices. Two gas-fired boil-
ers provide hot water to all toilets and kitchens throughout the
building.

Fig. 3 illustrates the metering strategy for the supply of electric-
ity and gas to the building. As shown, the landlord is responsible
for the electricity consumed by all air conditioning equipment
including the AHUs, FCUs, chillers, pumps and fans as well as the
Building Management System (BMS) and other control equip-
ments. The lighting throughout the common areas of the building
as well as the toilets is also supplied and maintained by the
landlord. As such, the energy supplied for the landlord services is
metered together, with no sub-metering for individual end-uses.
Meanwhile, the electricity supplied to the tenants for lighting,
small power equipment and catering in each of the floors is me-
tered separately. A total of 31 sub-meters provide a further break-
down for each of the 4 zones in each floor: North-East (NE),
Northwest (NW), Southeast (SE) and Southwest (SW).

2.2. Monitoring process

Following a full TM22 assessment of the building, whereby the
total energy consumption for both gas and electricity was analysed
and broken down by individual end-use, a further analysis of the
tenants’ consumption was undertaken. This in-depth study focused
on the electricity consumption for lighting, small power and cater-
ing within each of the tenant zones, relying on monthly meter
readings for each of the sub-meters as well as half hourly profiles
acquired through the use of 3-phase portable data loggers con-
nected to the individual sub-circuits. Further data was acquired
using combined plug monitor/loggers connected to individual
small power office equipment such as laptops, computer screens
and docking stations. These were also used to monitor the electric-
ity consumption of catering equipment such as fridges, microwave
ovens and coffee machines. Half hourly profiles for each of the
pieces of equipment being monitored were reviewed in order to
obtain an average daily consumption value. Where different usage
modes were present (such as stand-by mode), these were recorded
separately and accounted for when calculating the average daily
consumption for each equipment. Occupancy patterns were also
monitored by manually recording the number of occupants within
the office in half-hour intervals.

3. Monitoring results

Fig. 4 illustrates the annual tenant electricity consumption per
floor (normalised by m2). This includes lighting, small power and
catering equipment loads. It is worth noting that the lighting spec-
ification and controls are consistent throughout the entire building
and the catering facilities in each floor are of a similar size and



Fig. 4. Annual tenant electricity consumption per floor area. Fig. 6. Annual electricity consumption per tenant (normalised by floor area).
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nature (consisting mainly of an instant hot water heater, a micro-
wave, a dishwasher and a full size fridge). Some floors have addi-
tional coffee machines and/or vending machines, and the tenants
on the ground floor have a large bar with multiple fridges. In re-
gards to small power, a fairly consistent volume of office equip-
ment is present throughout the building. Despite their different
nature of work, all 4 tenant companies have similar occupation
densities and office equipment specifications. Most workstations
consist of a computer screen, laptop and docking station as well
as phone. Some workstations have individual desk lamps, personal
fans and/or desktop printers. In addition, all floors have large prin-
ter/copiers (typically 6–8 per floor) as well as projectors and/or flat
screen displays in meeting rooms.

As seen, the 2nd floor consumes approximately 60% more elec-
tricity per m2 than the lowest consumer (5th floor). This is quite a
significant variation considering the consistency in lighting speci-
fication and controls as well as the similarities in installed equip-
ment and occupation density. However, when relating the
electricity consumption to the tenants occupying each of the floors,
a clearer pattern can be observed. Fig. 5 illustrates how the differ-
ent tenant companies are located throughout the building. As
shown, the lowest consuming floors (5th and 6th) are wholly
occupied by Tenant C. Similarly, the 3rd and 4th floors are mainly
occupied by Tenant B, presenting similar annual consumption
values.

Fig. 6 illustrates the annual electricity consumption of each ten-
ant per m2 of office space they occupy. Not surprisingly, Tenant C
has the lowest electricity consumption at 90 kW h/m2. Tenant A
has the highest annual consumption at 155 kW h/m2, followed clo-
sely by Tenant D at 139 kW h/m2. This might explain why the 2nd
floor has the highest consumption seeing as it is occupied by both
Tenants A and D.

An informal interview was conducted with the facilities
co-ordinator of each tenant to investigate the causes of such vari-
ations. This revealed that the employees of Tenant A are instructed
to leave their computers on overnight for IT upgrades. As such, a
Fig. 5. Location of tenant companies throughout the building.
large quantity of electricity is used outside the normal operating
hours of the building, accounting for a significant portion of their
overall consumption. Similarly, employees of Tenant D often leave
their computers on at the end of the day so that time-consuming
tasks, such as high quality rendering, can be performed overnight.
On the other hand, employees of Tenants B and C are heavily
encouraged to save energy through internal communications to
turn off their computers and screens at the end of the day. Tenant
B has also instructed their facilities co-ordinator to switch off prin-
ter/copiers and non-essential catering equipment such as coffee
machines at the end of each day.
3.1. Detailed analysis of electricity demand

Following the analysis of annual electricity consumption data,
an in-depth study was undertaken to examine the variation in
electricity demand throughout a typical week. Fig. 7 illustrates
the half hourly electricity consumption for a single zone in the
4th floor of the building (occupied by Tenant B).

As shown, the base load is approximately 3 kW h/m2 outside
working hours. The electricity demand starts to escalate around
06:00 peaking at approximately 13 kW h/m2 by 10:00. This can
be associated with the arrival of employees who trigger the motion
sensors, turning on the lights. This will usually be followed by of-
fice/catering equipment being turned on. From 10:00 to 17:00 the
demand remains fairly high, varying between 11–14 kW h/m2,
eventually decreasing to approximately 8 kW h/m2 by 19:30. This
can be associated with equipment being turned off as employees
leave the office. A steep rise in the demand is then observed at
approximately 20:30, followed by a fairly quick decrease, bringing
the demand down to the base load at around 22:00. This late peak
can be associated with the cleaning schedule of the building. It is
assumed that the rise in demand is due to the use of vacuum clean-
ers as well as the dishwasher being turned on. The electricity de-
mand during the weekend is fairly constant at a similar base
load to the evenings. The only deviation occurs on Saturday be-
tween 9:00 and 15:00 when the electricity demand rises to
approximately 5 kW h/m2. This can be associated to individual
employees going into the office to work extra hours.

The analysis of half hourly electricity consumption has sug-
gested a high correlation between occupancy hours and electricity
consumption. In order to determine the extent of this correlation,
real occupancy levels were monitored and plotted against the half
hourly electricity consumption. Fig. 8 illustrates the results of this
monitoring showing occupancy patterns on a typical working day.
As shown, the electricity demand follows the monitored occupancy
profile quite closely. The initial peak in demand is observed around
08:00 when occupancy numbers start to increase rapidly. Simi-
larly, a steep decrease in electricity demand is observed after
17:30 when occupancy starts to decrease. However during



Fig. 7. Monitored electricity consumption for 4th floor – Northeast zone.

Fig. 8. Relationship between monitored electricity consumption and occupancy profiles.
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lunchtime, the quick decrease in occupancy is not reflected in the
electricity demand. This is because most computers are kept on
and lighting levels remain constant. As previously mentioned, the
sharp peak around 20:00 is associated with the cleaning.

Fig. 8 also illustrates the standard occupancy profile for offices
used by SBEM for compliance predictions. Despite its simplistic
nature, standard profiles such as this are normally used in DSMs.
As shown, there is little correlation between the SBEM profile
and the monitored electricity consumption. The impact of using a
standard occupancy profile in predictive models is discussed in fur-
ther detail below.

4. Predictive models

Following the detailed analysis of electricity consumption in the
4th floor NE zone, the acquired data was used to produce 5 predic-
tive models of electricity consumption. These predictions refer to
the annual electricity consumption for lighting, small power and
catering for this specific zone, occupied by Tenant B. An increasing
level of detail was used in each subsequent model, replacing typi-
cal assumptions with monitored data. The parameters used for
each of the electricity demands are detailed in Table 2. It is worth
mentioning that due to increasing complexities in the input
parameters of small power and catering equipment, a spreadsheet
approach was taken to predict annual electricity consumption.
Although most DSMs will allow such detailed parameters to be
used, the process of doing so can be quite onerous. In addition,
most DSMs rely on a ‘black box’ approach, meaning that the user
has no control over how the calculations are carried out [22], mak-
ing it difficult to visualise the impact of such detailed inputs in the
overall electricity consumption of the building. As such, a bottom-
up approach to CIBSE TM22 was used to produce the predictive
models. This methodology (illustrated earlier in Fig. 2) has previ-
ously been used to predict electricity consumption [2,23], allowing
for detailed parameters such as load and usage factors to be used.
This approach was used in predictive models 1 and 2. Alternatively,
metered data can be used to replace assumptions, increasing the
accuracy of the model. This approach was used in models 3, 4
and 5, where increasing amounts of data acquired from the moni-
toring study (mostly through the use of plug monitors) was used to
replace standard assumptions regarding energy consumption of
specific equipment. Information gathered through the monitoring



Table 2
Input parameters used in each predictive model.

Brief description Lighting Small power Catering

1 Typical compliance model using lighting specification from the design brief, using SBEM
standard occupancy hours and overlooking small power and catering equipment

11 W/m2,
2600 h/year

Not considered Not considered

2 ‘Enhanced’ compliance model using industry rules of thumb to account for small power
loads [24], but overlooking catering equipment

11 W/m2,
2600 h/year

15 W/m2, 2080 h/year
(due to 80% usage factor)

Not considered

3 Initial bespoke model using monitored data regarding the installed lighting load as well
as measured electricity demand for basic small power and catering equipment. SBEM
standard occupancy hours were used accounting for an 80% usage factor of small power
equipment

13 W/m2,
2600 h/year

170 laptops 1 water heater
170 screens 1 fridge

= 0.3 W/m2, 2600 h/year5 printers
= 11 W/m2, 2080 h/year

4 Intermediate bespoke model using monitored data for lighting as well as measured
electricity demand for all small power and catering equipment installed. SBEM standard
occupancy hours were used once again with allowances for usage factor of small power
equipment

13 W/m2,
2600 h/year

170 laptops 1 water heater
170 screens 1 fridge
5 printers 1 microwave
8 desk lamps 1 dishwasher
6 desk fans
= 11.5 W/m2, 2080 h/year

2 coffee machines
= 1 W/m2 2600 h/year

5 Advanced bespoke model using monitored data for lighting as well as measured
electricity demand for all small power and catering equipment installed. Monitored
hours of use were used for all lighting, small power and catering equipment

13 W/m2,
3640 h/year

170 laptops 1 water heater
170 screens 1 fridge
5 printers 1 microwave
8 desk lamps 1 dishwasher
6 desk fans
= 11.5 W/m2

[monitored hours of use
per individual equipment]

2 coffee machines
= 1 W/m2

[monitored hours of use
per individual equipment]
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of occupancy patterns was also used to substitute standard occu-
pancy hours in model 5.

It is worth mentioning that the actual electricity consumption
value displayed in Fig. 9 was unknown at the time these predictive
models were developed. The author was aware of the average con-
sumption per m2 for Tenant B but did not have access to the actual
consumption value for the specific zone being modelled.

Results from the predictive models are illustrated in Fig. 9. The
predictions are labelled 1–5 accordingly and reflect the inputs
specified in Table 2. As seen, the predictions are compared against
the actual electricity consumption, which is not subdivided into
the specific end-uses due to the limitations of the sub-metering
strategy of the building. Two benchmark values are also illustrated
in the graph for further comparison. These were acquired from
‘Energy Consumption Guide 19’ (commonly referred to as ECON
19) and illustrate industry benchmarks for Typical (TYP) and Best
Fig. 9. Comparison of benchmarks, predict
Practice (BP) energy consumption for lighting, small power and
catering in standard air conditioned office buildings with floor
areas between 2000m2 and 8000m2 (i.e. Type 3) [25].

As shown in Fig. 9, the increased detail in the input parameters
of models 1–5 have resulted in incremental increases of the pre-
dicted annual electricity consumption. By using a typical compli-
ance model in prediction model 1, the calculated electricity
consumption was shown to be less than 1/3 of the actual in-use
consumption. The predicted value was then increased significantly
in prediction model 2 when ‘rules of thumb’ published by the
Building Services Research and Information Association (BSRIA)
for small power consumption were used to account for the electric-
ity demand of office equipment [24]. It is worth mentioning such
rules of thumb are commonly used in DSMs when trying to predict
energy consumption of buildings in-use [26]. In prediction model
3, design specifications and rules of thumb were replaced by mon-
ed and actual electricity consumption.



Table 3
Input parameters used in predictive models for methodology validation.

Lighting Small power Catering

1 11 W/m2, 2600 h/year Not considered Not considered

2 11 W/m2, 2600 h/year 15 W/m2, 2080 h/year
(due to 80% usage factor)

Not considered

3 Fixed lighting = 12.8 W/m2, 2600 h/year 40 laptops 1 water heater
70 desktops 1 fridge

= 0.3 W/m2 2600 h/year
110 screens
4 printers = 11.6 W/m2, 2080 h/year

4 Fixed lighting plus decorative and task
lighting = 17.3 W/m2, 2600 h/year

40 laptops 1 water heater
70 desktops 1 fridge
110 screens 3 glass front fridges
4 printers 2 microwave
2 desktop printers 1 dishwasher
3 plasma TVs
= 12.6 W/m2, 2080 h/year

2 coffee machines

2 vending machines
= 2.3 W/m2, 2600 h/year

5 Fixed lighting plus decorative and task
lighting = 17.3 W/m2, 3120 h/year

40 laptops 1 water heater
70 desktops 1 fridge
110 screens 3 glass front fridges
4 printers 2 microwave
2 desktop printers 1 dishwasher
3 plasma TVs
= 12.6 W/m2 [monitored hours of use per
individual equipment]

2 coffee machines
2 vending machines
= 2.3 W/m2 [monitored hours of use
per individual equipment]
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itoring data of installed lighting and equipment. At this point how-
ever, only basic equipment were considered and SBEM standard
occupancy hours were assumed. This resulted in a similar total
prediction of electricity consumption, yet this total consisted of
higher lighting loads and lower small power loads. This demon-
strates that actual installed lighting loads were higher than speci-
fied at design stage. Meanwhile the small power prediction seems
to have been fairly conservative by having considered only basic
office and catering equipment. In prediction model 4, all installed
equipment were included, resulting in an increase of approxi-
mately 15% in the total electricity consumption. Finally, in predic-
tion model 5, the SBEM standard occupancy hours were replaced
by monitored occupancy hours. By doing so, the predicted electric-
Fig. 10. Predictive model results and actual electr
ity consumption came within 3% of the actual consumption of the
building in-use. This small discrepancy could be associated with
the fact that the predictions were based on measurements from a
single day. As such, the model assumes a typical operation
throughout the entire year, disregarding variations in both occu-
pancy and energy use profiles that are bound to occur.

When comparing the results from the predictive modelling
against the ECON 19 benchmarks, it is possible to conclude that
the final prediction is only slightly higher than the typical bench-
mark for a Type 3 office building. However, when considering that
Tenant B had the second lowest consumption per m2 in the build-
ing, one would expect it to be lower than the typical benchmark
and perhaps closer to best practice. Considering that the ECON
icity consumption in both zones investigated.
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19 benchmarks were compiled over 10 years ago, they might not
be representative of current office buildings. With the fast
advancements in the design of low energy ICT equipment, energy
consumption due to small power would be expected to have
decreased in the last decade. However, current offices are now
run for longer hours and tend to contain more items of small power
equipment. The same would be expected for lighting and catering,
resulting in similar proportions of electricity being consumed by
each end use. The lack of more up-to-date benchmarks makes it
hard for further conclusions to be drawn.

4.1. Methodology validation

In order to validate the methodology used to generate the pre-
dictive models, the same approach was used to model another
zone in the building occupied by a different tenant (i.e. 2nd floor
South-West zone occupied by Tenant D). Once again a walk
through inspection was undertaken to determine the quantities
of installed equipment throughout the zone. Plug monitors were
then used to log the energy consumption of different small power
and catering equipment, and variations in occupancy density were
also monitored via half-hour inspections throughout the day. Ac-
quired data was incrementally used to inform the input parame-
ters for the predictive models, as detailed in Table 3.

The previous investigation into the energy use of Tenant D had
revealed that a significant proportion of employees routinely left
their computer on overnight in order to run time consuming tasks.
In order to account for this behaviour into the predictive models,
an assumption was made that 20% of computers were constantly
left on. This assumption was made based on rough estimated pro-
vided by Tenant D’s IT technicians. Fig. 10 compares the results of
the predictive models with the actual electricity use for the zone
being analysed. It also illustrated the results from the previous pre-
dictive models for the zone occupied by Tenant B.

As seen in Fig. 10, the first two models are identical for both
zones. This is due to the fact that they are compliance models,
which do not account for actual installed loads or any specific char-
acteristics of the individual zones. Models 3–5 provide increasing
levels of detail into the installed equipment within each of the
zones, progressively increasing the accuracy of the models. Once
again it is the final step of adjusting the occupancy hours that
seems to have the highest impact towards achieving an increas-
ingly accurate prediction.

During this validation exercise, the final model achieved a pre-
diction within 6% of the actual electricity consumption of the zone,
being slightly less accurate than the initial set of predictive models.
This could be related to the assumptions made regarding the pro-
portion of employees who leave their computer on overnight, sug-
gesting that more than 20% of computers are constantly left on
overnight. This emphasises the importance of minimising the use
of assumptions in order to achieve realistic predictions.

5. Conclusion

This paper has discussed the existence of a gap between pre-
dicted and actual energy consumption in non-domestic buildings.
It has highlighted the main causes of such discrepancies, identify-
ing POE as a key tool for understanding this issue further. It also
identified the potential for using POE results to inform predictions,
enabling better assumptions to be used in detailed energy model-
ling. A case study revealed that by conducting basic monitoring
exercises it is possible to feed results into energy models and gain
a more accurate prediction of a building’s actual performance
(within 3% of actual consumption for this specific study). A valida-
tion exercise demonstrated that replicating the methodology with-
in a different zone in the building produced results within 6% of the
actual energy use for the zone. Despite the limited applicability of
this methodology to non-speculative buildings, the results are
encouraging and demonstrate that reliable predictions can be ob-
tained for lighting and small power loads by using realistic
assumption in the modelling process. It is also worth mentioning
that improved predictions for electricity consumption due to light-
ing and equipment can also inform better assumptions regarding
internal loads, which can in turn improve the prediction of cooling
and heating demand in a building.

Key findings from this study highlight the need for better
understanding of occupancy patterns and behaviour in office build-
ings. Variations in the electricity consumption of different tenants
occupying the same building have demonstrated that modelling
software should account for different occupancy patterns and
behaviours if realistic predictions are to be achieved. In addition,
a clear correlation was observed between monitored occupancy
profiles and tenant electricity consumption. It should be noted
however, that energy demand can vary largely with tenant behav-
iour throughout the day (not only when they arrive or leave). The
impact of management was not analysed in this study due to its fo-
cus on tenant consumption. It is important to highlight, however,
that management decisions, such as the running of ICT updates
outside of occupancy hours, were observed to have a significant
impact on the tenant consumption. Inconsistencies between de-
sign specification and installed lighting loads were also observed
to have a considerable impact on the discrepancy between pre-
dicted and actual electricity use.

If the UK is to experience real reductions in its CO2 emissions, it
is imperative that we start achieving energy efficiency in practice.
With Building Regulations relying heavily on predictive indicators
of performance, it is vital that we understand the limitations of the
current compliance modelling and aim to predict realistic energy
consumption levels by using detailed DSMs that account for realis-
tic occupancy and management behaviours. The widespread prac-
tice of POE can help us understand how occupants and facilities
managers interact with the built environment. It can also provide
valuable information regarding the performance of the current
building stock.
6. Future work

Future work will seek to use detailed POE data to develop a set
of evidence based benchmarks for energy consumption in office
buildings. It is envisioned that these benchmarks will inform
designers regarding the impact of occupancy and management
on the actual energy consumption of offices. Moreover, it should
enable the use of more realistic input parameters in energy models,
bringing the predicted figures closer to reality.
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