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Abstract

We consider the intrinsic levels of spatial interaction necessitated by current North American urban spatial structure and investigate
the potential for reducing average commuting trip lengths. In this paper, we use a doubly constrained spatial interaction model to gen-
erate critical parametric values which are then used to calculate the effort needed to reduce average trip length by a fixed target for each
urban area. The measure of effort is defined as the degree of difficulty to achieve commuting and fuel consumption goals, and compared
across a set of 26 US cities. Since the urban structure varies spatially, it is harder for some cities than others to reach a given level of
reduced energy consumption.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

‘‘Maybe I’ll have to find work closer to where I live
already. Change the job.” (Daniels, 2006)

These words spoken by a Washington, DC commuter trav-
eling 55 miles to work provide anecdotal evidence of an
individual’s efforts to adapt behavior when gas prices reach
a critical point. The levels of energy prices at which com-
muting behavior and spatial patterns begin to show signs
of adjustment have attracted wide attention in the media.
While abundant cheap gasoline has fueled the decentraliza-
tion of American cities for several decades, the present
price surge has caused a good deal of attention to the
built-in demand for gasoline at the national level. By
built-in demand we mean a necessary demand for move-
ment that is a function of the spatial arrangement of the
city. It is much harder to reduce the demand for movement
proportionally in those cities where places of work and res-
idence are widely separated than in those cities where the
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activities are more uniformly intermingled. In this respect
it is important to gauge from data the exact level of effort
that would be needed to achieve a given improvement, and
track the spatial variability in a comparative framework.

The issue at hand becomes one of determining the com-
parative difficulty of moving an observed trip distribution
pattern in a city to a lower average trip length. The chal-
lenge is to model the likely trip distribution that is consis-
tent with current residential and workplace distributions
and at the same time attain a reduced average trip length.
We wish to do this without pushing the trip distribution all
the way to the linear programming based minimum aver-
age trip length (as advocated in the excess commuting
framework). While the minimum is a socially optimal value
associated with commuting, it is impossible to force indi-
viduals to produce a collectively socially optimal outcome.
The entropy maximizing doubly constrained trip distribu-
tion model is an ideal vehicle for this analysis because it
reflects the most probable distribution of trips given the
data, which are then modified to reflect the lower target
average interaction trip length. The question that is the
focus of our research is this: if a city is on average required
to travel shorter distances, how difficult is it for the city to
reflect that modified pattern while maintaining the origins
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and destinations of the trips? It is implicit in our analysis
that the basic origin and destination locations supporting
residential and commercial land-use patterns are them-
selves relatively fixed. Long term macro adjustments are
beyond the scope of this article (see Horner and Murray,
2003).

This paper develops a partial approach for examining
the spatial variability of the effort needed to reduce energy
consumption across urban regions in the US. Generally
speaking, within a given urban context, reducing trip
length produces trip distributions that are less random
and more structured.1 Defining entropy as a measure of
disorder or randomness, note that entropy decreases when
trips become more highly structured. We employ a partic-
ular definition of ‘‘effort” in terms of the change in entropy,
which captures the work performed by the spatial interac-
tion model to reduce trip lengths while maintaining consis-
tency with origin and destination totals. Exactly how much
change in the aggregate statistic might be needed varies
with the structural make-up of the city. The next section
reviews and integrates three related strands in the literature
on commuting, land-use and energy consumption. This is
followed by the presentation of our modeling approach
for addressing the degree of difficulty in meeting reduced
energy consumption goals. Modeling results for the analy-
sis of 26 metropolitan areas in the US are then given fol-
lowed by a discussion and conclusions.

2. Background

Our focus is on reduction of intrinsic demand through
trip distribution adjustments. By intrinsic demand we mean
the locked-in demand for gasoline as a function of the cur-
rent spatial arrangement of the city. This level is the result
of a complex process involving worker locational decisions
and auto ownership rates, among other factors. Imagine a
family with two cars living in a single family house in the
suburbs. Each parent drives to work; one of them to the
office in a suburb on the other side of the central city, the
other to a factory in an adjacent suburb. (We use an office
and a factory as representative of fixed employment desti-
nations – we do not mean to imply that journeys to work
are only to professional and industrial work zones.) Given
the family’s preference for home and job locations, the
clear pattern of journey-to-work will show the daily inter-
change between the origin and the destinations. Not much
can change in terms of trip patterns in this situation, given

the fixed trip origins and destinations.2
1 For example, in the extreme case of a minimum cost solution to the
related transportation problem, only 2n � 1 of the possible n2 cells are
active. In other words n2 � 2n + 1 cells are structurally zero.

2 At very extreme levels of transport costs, the residential rents would at
least technically have to be lowered to make the matching of locations
feasible (Herbert and Stevens (1960) and as a logical deduction from the
Alonso (1964) model of residential land rent).
From the physical layout of the built-environment, we
cannot avoid some elements of these costs, given the spatial
separation of homes and jobs. In turn, some cities have a
comparatively easy time of it, given that the spacing
between their homes and factories may be particularly well
laid out for the purposes of interaction. But as more and
more of our city interaction patterns (Hanson and Giuli-
ano, 2004) involve cross town commuting and movement
between decentralized urban sub-centers (Rogerson, 1987)
the task ahead is difficult if reduction of travel is to be
achieved. It seems to be the case that the long average com-
mutes are an unavoidable by-product of our urban spatial
organization. In a sense then, we are indeed hooked on
gasoline.

Now, imagine an experiment where we try to judge cities
in terms of excessive use of transportation (i.e. aggregate
vehicle miles). Cities that have less flexibility (because of
their layout) should perhaps be recognized as having a
lower potential for reducing spatial interaction costs. On
the other hand cities that have a compact or ‘‘distance
friendly” set up, might initially be among the more wasteful
consumers of vehicle miles (distance), and so the reduction
goals could be rather easily met through a reduction in the
number of truly excessive commutes across town. At any
rate, this spatially varying effort, degree of difficulty or flex-
ibility is precisely the focus of our research.
3. Integrating commuting, spatial interaction and entropy
maximization

By setting a goal of reducing average trip length by say
3% of current levels, it is reasonable to expect that such a
goal may be overly ambitious for cities with an unfavorable
spatial structure for commute reductions. Given the cur-
rent snapshot of the layout of cities in the US, we are con-
cerned with charting the spatially varying levels of the
effort or degree of difficulty of adjusting travel patterns
to high gas prices given the goal of a particular work travel
distance reduction.3

One such approach to measuring and comparing theo-
retical and observed average trip lengths is the linear pro-
gramming based approach to commuting efficiency
(White, 1988). In this area of land-use, sustainability and
transportation related work, the observed distributions of
home and job locations along with an empirically derived
distance matrix are used to derive the extreme ends of the
trip distribution possible given the actual urban spatial
structure (Horner, 2002; White, 1988). These extremes,
the minimum and maximum average trip lengths, are then
used to infer something about the commuting efficiency of
the region, known in the literature as excess commuting
(Horner, 2002). The more the home and job locations are
3 Three percent is a reasonable goal, because discussion of energy
savings has recognized that such a relative saving would have a large
aggregate impact on energy demand. ‘‘[I]f only people could cut back on
3% of travel” (Healey, 2006). Drivers curb use as gas goes up. USA Today.
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decentralized and dispersed, the more possibilities exist for
very short and very long commutes. Using the observed
trip length sandwiched between the extremes, researchers
then evaluate the ability of commuters to take advantage
of commute minimizing opportunities within an inter-
regional comparative framework. However, the current
optimization based approach not only lacks the ability to
generate theoretical trip distributions other than the
extremes, it also cannot provide information on the diffi-
culty involved in moving toward the two extremes. Thus,
we must look elsewhere for a modeling approach that
accounts for both of these deficiencies in the linear pro-
gramming approach.

Based on the work of Wilson (1974) and the concepts
developed in the excess commuting literature (Horner,
2002; White, 1988), we use the spatial interaction model
to investigate the spatially varying possible energy con-
sumption reductions. There are strong mathematical con-
nections between the transportation-problem approach
preferred in the excess commuting literature and the dou-
bly constrained spatial interaction model in the investiga-
tion of urban form. The doubly constrained model
provides beta parameter values corresponding to input val-
ues of the average commute distance. Clearly, the model
generates a beta parameter associated with the observed
commute. It is critical to note that in the present formula-
tion, beta is ordinarily a positive number and enters the
model with a negative sign.4 Thus, as the magnitude of
the beta parameter deterrence factor in the model increases,
the average trip length decreases, and travel patterns
become more efficient. We can continue to increase beta
until the trip length approaches the asymptotic lower
bound set by the associated minimum cost transportation
problem. Similarly, in the opposite direction, smaller val-
ues of beta reduce the deterrent effect of distance allowing
for inefficient, and ultimately ‘‘distance seeking” commut-
ing patterns. As we continue to decrease beta,5 even going
to negative values, the trip length approaches the asymp-
totic upper bound trip length obtained by optimization.
Thus, we can plot the curve of corresponding beta and
average trip length values (see Fig. 1).

As opposed to the usual excess commuting based
approach, where only two optimization benchmarks are
compared, the doubly constrained spatial interaction
model allows us to compare a range of feasible trip
length solutions. Though minimization obviously pro-
vides the greatest reductions in average trip length, the
prescription is impractical. However, noticeable changes
4 By convention in the literature beta is a positive number that enters
with a negative sign, indicating that the distance deterrence term is
effectively part of the denominator in the model. Thus higher distances
serve to impede interaction. The larger the magnitude of beta, the greater
this impedance effect.

5 Note that decreasing beta through to negative numbers, given that beta
enters the model with a negative sign, produces a counter-intuitive effect of
travel attracted to longer distance.
in work travel distance can be accomplished by sensitiv-
ity analysis of the doubly constrained interaction model.
The model accepts as input an attainable target average
trip length in order to track the comparable difficulty
associated with travel demand reductions given an urban
spatial structure.

4. Methodology

We begin the model development by noting that entropy
maximization provides trip distributions that are maxi-
mally consistent with the known data and at the same time
noncommittal with respect to the missing data. The spatial
interaction component provides the necessary calculations,
while incorporating distance-decay effects (Fotheringham
and O’Kelly, 1989; see also Sweeney, 1999). The exogenous
input to the model is the known data consisting of the
number of workers living in the origin zone (Oi), the num-
ber of jobs in the destination zone (Dj), the distance (Cij)
and observed flow (Tij) between them. The maximum
entropy model seeks to fill in the cells of the modified trip
distribution maintaining consistency with the observed
flows and origins and destinations of the trips while reflect-
ing the reduced average trip length. The result of the model
is the entropy statistic corresponding to the average trip
length currently in the model. The analyst is able to gener-
ate entropy statistics for the entire range of beta between
the maximum and minimum commutes found by optimiza-
tion. Entropy is at a maximum when beta is zero, and rep-
resents a random trip distribution over the region. This
random distribution is computed by taking the expected
origin to destination flow as a function of their sizes, but
independently of any distance effect. It is worth noting that
this random trip distribution and associated average trip
length is probably a more accurate upper bound on com-
muting patterns than the maximum average trip length
from linear programming since commuters do not deliber-
ately travel to work inefficiently; rather the worst journey-
to-work pattern is a result of a random process spreading
trips throughout the region.

There are intimate connections between the three statis-
tics presented thus far, the average trip length, beta and
entropy. For completeness Fig. 1 shows the full spectrum
of beta values before they are inserted into the model; thus
a ‘‘0.1” on the x-axis becomes an exponent of ‘‘�0.1” when
beta enters the model. This conventional approach of beta
values entering the model with a negative sign reflects the
distance deterrent effect. For example, a beta value of 0.1
has a negative effect on interaction (i.e. tendency toward
shorter trip lengths) because it appears as an exponent of
�0.1 in the model, while a beta value of �0.1 has a positive
effect on interaction (i.e. tendency toward longer trip
lengths) because it appears as an exponent of 0.1 in the
model. From Fig. 1, it is clear that there is a negative rela-
tionship between the average trip length and beta: as beta
increases, the average trip length decreases reflecting the
increasing deterrent on longer journeys-to-work.
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Fig. 1. Curve of b versus the average trip length.
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Entropy values trace out a different path (Fig. 2). By
logical deduction, as the average trip length is reduced
from its maximum toward randomness, entropy increases,
reaching a maximum at b = 0. Conversely, entropy
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(i.e. uncertainty) decreases as the trip length continues its
slide toward the minimum. More importantly, as we move
away from a random trip distribution, the system has to
work harder to maintain the origin and destination outflow
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and inflow totals, respectively. This effort in maintaining a
balanced system is what we are calling the degree of diffi-
culty or flexibility depending on the point of view.

Our approach for the estimation of entropy uses the
maximum entropy derivation of the doubly constrained
trip distribution model which is found from:

MAX H ¼ �RiRjT ij ln T ij

Subject to RjT ij ¼ Oi ki is the associated

unknown Lagrangean multiplier

RiT ij ¼ Dj lj is the associated

unknown Lagrangean multiplier

RiRjT ijCij ¼ C b is the associated

unknown Lagrangean multiplier

It can be shown that

T ij ¼ expð�ki � lj � bcijÞ

which is the first order condition for the objective function
to reach a maximum. Then following the common deriva-
tion of the spatial interaction model (Fotheringham and
O’Kelly, 1989):

T ij ¼ AiOiBjDj expð�bcijÞ

where Ai and Bj are the conventional balancing factors and
are adjusted by the model to fit the modified trip distribu-
tion (Tij) to the reduced average trip, C. Thus, the magni-
tude of the Ai’s and Bj’s is a function of the effort of the
system to maintain balance with the outflows and inflows,
respectively.

Substituting into H,

H ¼ �RiRjT ijð�ki � lj � bcijÞ

Therefore,

H ¼ RiRjT ijki þ RiRjT ijlj þ RiRjT ijbcij

¼ RikiRjT ij þ RjljRiT ij þ bRiRjT ijcij

¼ RikiOi þ RjljDj þ bC

Relating ki and lj to the conventional balancing factors Ai

and Bj, we can assume that Ai and Bj are defined as follows
(by conventional derivation):

Ai ¼ 1=RjBjDj expð�bcijÞ
Bj ¼ 1=RiAiOi expð�bcijÞ

which means that

ki ¼ � lnðAiOiÞ
lj ¼ � lnðBjDjÞ

We can now use these insights to solve the maximum entro-
py derived doubly constrained spatial interaction model for
a given value of the average trip length. For the observed
average trip length (C1), this run results in:

H 1 ¼ Rik
�
i 1Oi þ Rjl

�
j 1

Dj þ b�1C1
where the asterisk is designed to emphasize that these are
the solution values and all depend on the exogenous data:
Oi, Dj, and C. Recall that in the excess commuting litera-
ture the Oi and Dj are typically held constant, and the trip
length is varied (towards a minimum or maximum).

Notice that the entropy statistic, H, has three compo-
nents: Riki Oi, RjljDj, and b*C, which are generated from
the known data and the results from the entropy maximiz-
ing model. Therefore, we can separately compute each
component as follows:

Rik
�
i Oi where k�i ¼ � lnðAiOiÞ from the balancing

factors at the end of the run

Rjl
�
j Dj where l�j ¼ � lnðBjDjÞ from the balancing

factors at the end of the run

b�C where b� is the trip length parameter

The process is rerun for a different, reduced, average trip
length (C2)

H 2 ¼ Rik
�
i 2Oi þ Rjl

�
j 2

Dj þ b�2C2

Then after a small amount of algebra,

H 1 � H 2 ¼ RiOiðk�i 1 � k�i 2Þ þ RjDjðl�j 1
� l�j 2

Þ þ b�1C1

� b�2C2

The difference, H1 � H2, is the effort or degree of difficulty
expressed in terms of the change in entropy, which is pre-
cisely the focus of our investigation.

Whereas H is a measure of the overall effort that the sys-
tem needs to maintain balance while matching the reduced
average trip length, each component of H measures the
work needed to balance the origins, destinations and the
trip length respectively. Thus, this approach generates
aggregate and disaggregate measures of the system effort.
Since these facts are encoded in the multipliers, we are able
to interpret all the measures comparatively.

The relationship between the three statistics should now
be clear. Assume C0 is the average trip length associated
with b equal to zero, and C1 is the observed average trip
length with the appropriate corresponding b. What hap-
pens when we lower the trip length to C2? We move away
from the entropy maximizing trip length, C0, which occurs
when b equals zero. Thus, we should see that b1 < b2 and
H1 > H2 as we reduce trip length from C1 to C2.

5. Application results

For the purpose of this analysis, the entropy maximizing
version of the spatial interaction model was coded in C++
using origin and destination totals obtained from the Cen-
sus Transportation Planning Package (CTPP) part 3. The
cost matrix is calculated using Euclidean distances between
zonal centroids with intra-zonal trip lengths estimated by
the radius of a circle circumscribing each zone (Frost
et al., 1998). The model was run three times for each of
the 26 cities in the study, given the input of the average trip
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length associated with maximum entropy (b = 0), the
observed average trip length and the average trip length
corresponding to 3% reduction of the observed commuting
pattern. The final output from the model contains the beta,
aggregate and disaggregate entropy statistics for the given
average trip length. In addition, the output file contains a
measure of the effort in reducing the city wide trip length
from the observed to the trip length at the 97% level of
the observed.
Table 1
Comparative regional spatial interaction and entropy statistics

MSA Commuting level Average trip length b Origin co

Atlanta Observed 11.11 0.172 4.24
3% reduction 10.78 0.181 4.15

Baltimore Observed 8.57 0.199 4.07
3% reduction 8.31 0.208 3.99

Boise Observed 7.53 0.175 3.96
3% reduction 7.30 0.187 3.87

Boston Observed 6.57 0.242 5.31
3% reduction 6.37 0.254 5.23

Charlotte Observed 7.32 0.188 4.84
3% reduction 7.10 0.202 4.74

Cincinnati Observed 7.98 0.209 4.51
3% reduction 7.74 0.220 4.43

Cleveland Observed 8.20 0.203 4.25
3% reduction 7.95 0.212 4.18

Columbus Observed 7.94 0.192 4.71
3% reduction 7.70 0.203 4.62

Denver Observed 8.15 0.189 4.87
3% reduction 7.91 0.199 4.79

Las Vegas Observed 7.22 0.140 4.53
3% reduction 7.00 0.157 4.41

Memphis Observed 7.78 0.171 4.48
3% reduction 7.55 0.185 4.37

Miami Observed 7.48 0.173 5.16
3% reduction 7.26 0.187 5.06

Milwaukee Observed 7.68 0.195 4.80
3% reduction 7.45 0.203 4.73

Minneapolis Observed 9.66 0.196 4.02
3% reduction 9.37 0.207 3.92

Omaha Observed 5.77 0.238 3.92
3% reduction 5.60 0.254 3.83

Philadelphia Observed 8.46 0.208 4.15
3% reduction 8.21 0.216 4.08

Phoenix Observed 11.23 0.155 4.10
3% reduction 10.89 0.167 3.97

Pittsburgh Observed 8.28 0.211 4.59
3% reduction 8.03 0.220 4.52

Portland Observed 6.35 0.242 4.57
3% reduction 6.16 0.257 4.48

Rochester Observed 8.73 0.185 3.21
3% reduction 8.47 0.196 3.12

Sacramento Observed 8.53 0.166 4.35
3% reduction 8.27 0.175 4.27

St. Louis Observed 9.32 0.185 4.36
3% reduction 9.04 0.195 4.27

San Antonio Observed 7.99 0.173 4.68
3% reduction 7.75 0.185 4.59

San Diego Observed 9.49 0.138 4.17
3% reduction 9.21 0.146 4.10

Seattle Observed 9.24 0.185 3.98
3% reduction 8.96 0.194 3.90

Wichita Observed 7.37 0.181 4.02
3% reduction 7.15 0.192 3.93
Table 1 shows the measures across 26 cities, a sample of
urban areas used in previous research (Horner, 2002),
depicting the statistics before and after the 3% average trip
length reduction. As a check of the theory, we can see that
the changes in the statistics are as expected. It is clear that a
decrease in the average trip length is associated with an
increase in beta and a decrease in the entropy statistic.
We can now as well see the relationship with the compo-
nents of entropy, such that as the average trip length is
mponent Destination component Trip length component Entropy

6.85171 1.91 13.00
6.85018 1.95 12.94
6.63149 1.71 12.40
6.63056 1.73 12.35
5.42067 1.32 10.70
5.41923 1.37 10.66
6.60077 1.59 13.49
6.60005 1.62 13.45
6.06462 1.38 12.28
6.06385 1.44 12.24
7.09556 1.67 13.28
7.09505 1.70 13.23
7.19287 1.67 13.11
7.19200 1.69 13.06
5.96894 1.53 12.20
5.96809 1.56 12.16
7.01659 1.54 13.43
7.01591 1.58 13.38
4.67013 1.01 10.21
4.66779 1.10 10.18
5.47578 1.33 11.28
5.47514 1.40 11.24
5.97096 1.29 12.42
5.96983 1.35 12.38
6.36701 1.49 12.66
6.36657 1.51 12.62
6.60234 1.90 12.52
6.60011 1.94 12.46
5.33339 1.37 10.62
5.33275 1.42 10.58
7.65472 1.76 13.56
7.65407 1.78 13.51
6.35675 1.74 12.20
6.35594 1.82 12.14
6.58151 1.75 12.92
6.58071 1.77 12.86
5.70416 1.54 11.81
5.70331 1.58 11.76
5.52884 1.62 10.35
5.52763 1.66 10.30
6.33852 1.42 12.10
6.33755 1.45 12.06
6.56971 1.73 12.65
6.56849 1.76 12.60
6.05716 1.38 12.12
6.05678 1.43 12.07
5.53837 1.31 11.03
5.53799 1.35 10.99
6.35848 1.71 12.05
6.35720 1.74 11.99
5.24932 1.33 10.60
5.24842 1.37 10.56
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reduced, the origin and destination components are
reduced but the third component increases. Notice that
the increase in C is less than the combined decrease in O

and D, thus, we see that taken as a whole, entropy
decreases, which is what we expect since with tighter trip
length constraints, we are moving further away from the
maximum entropy. Moreover, the disaggregate statistics
clearly indicate that the system has to work harder to bal-
ance the destinations than the origins. That is, it is easier to
achieve system balance by adjusting the origins than the
destination most likely because homes are much more
widely distributed than jobs (which tend to be clustered).

In addition to summarizing the changes in statistics,
Table 2 provides the measures of effort across the urban
regions. The fifth column reports the raw value of the
degree of difficulty, whereas the sixth column provides a
standardized measure, the degree of difficulty as a percent-
age of the maximum entropy. The spatial variability in the
degree of difficulty is apparent in Fig. 3. A general north-
east–southwest trend emerges with larger values (more
effort) in the northeast and lower values (less effort) in
the southwest, though Atlanta and Phoenix are exceptions
to this pattern. The interpretation of this pattern is that it is
more difficult to reduce the average trip length in older,
somewhat more compact, and somewhat more monocen-
tric cities in the rust-belt than it is in the newer, more
sprawl-like and multi-centered cities in the sunbelt. Atlanta
and Phoenix are exceptions to the general pattern because
of the particular spatial distribution of homes and jobs in
these sprawling cities resulting in the two longest observed
Table 2
Comparative regional average trip length reduction effort statistics

MSA DOrigin (%) DDestination (%) DTrip length (%

Atlanta �2.24 �0.022 1.98
Baltimore �1.82 �0.014 1.34
Boise �2.28 �0.027 3.85
Boston �1.51 �0.011 2.03
Charlotte �2.07 �0.013 4.19
Cincinnati �1.87 �0.007 2.00
Cleveland �1.63 �0.012 1.16
Columbus �1.75 �0.014 2.38
Denver �1.64 �0.010 2.14
Las Vegas �2.69 �0.050 9.12
Memphis �2.44 �0.012 5.15
Miami �1.96 �0.019 4.79
Milwaukee �1.38 �0.007 1.40
Minneapolis �2.52 �0.034 2.36
Omaha �2.30 �0.012 3.53
Philadelphia �1.64 �0.008 0.85
Phoenix �3.36 �0.013 4.86
Pittsburgh �1.59 �0.012 1.15
Portland �1.92 �0.015 2.67
Rochester �2.88 �0.022 2.70
Sacramento �1.68 �0.015 2.15
St. Louis �2.05 �0.019 2.17
San Antonio �1.94 �0.006 3.51
San Diego �1.81 �0.007 2.68
Seattle �2.12 �0.020 1.95
Wichita �2.09 �0.017 3.28
average trip lengths (11.10 and 11.23 miles, respectively),
thus necessitating significantly more effort in commute
reduction than their sun-belt neighbors.

The particular combination of the three entropy compo-
nents is different for each city, but generally speaking based
on Fig. 4, the trip length component (C) makes up a larger
share of the entropy change in newer, larger and more
sprawling cities than it does for older, smaller and less
sprawling cities. This is not surprising given that sun-belt
cities are larger in area than rust-belt cities, thus, it is easier
to achieve balance (less work by the system) in sun-belt cit-
ies simply by reducing extreme length commutes. Because
there are much fewer extreme commutes possible in rust-
belt cities (fewer geometric possibilities), then the system
focuses on the origin component to move the trip distribu-
tion in line with the target trip length. Thus, although it
may seem counter-intuitive, it takes less effort to reduce
commuting as measured by the average trip length in
sprawling urban regions than it does in more compact cit-
ies, assuming the job types can be matched. Referring to
the two exceptions identified in Fig. 3, Fig. 4 also shows
that the change in entropy components for Phoenix falls
in line with other sun-belt cities. Like other cities in this
region, it is easier to reduce extreme trip lengths in Phoenix
than the origin component. Although a sun-belt city, the
focus on reducing commutes in Atlanta is reminiscent of
that in northeastern cities.

While, in general it is true that the standardized effort
metric is lower for the sun-belt and higher for rust-belt, it
is also apparent from Table 2 that the effort metric does
) DEntropy Effort Effort as % of maximum entropy

�0.451 0.05875 0.416
�0.421 0.05227 0.380
�0.382 0.04089 0.364
�0.362 0.04886 0.341
�0.349 0.04287 0.338
�0.387 0.05144 0.354
�0.390 0.05107 0.348
�0.386 0.04707 0.365
�0.354 0.04750 0.333
�0.316 0.03224 0.310
�0.368 0.04145 0.359
�0.324 0.04028 0.316
�0.362 0.04587 0.336
�0.467 0.05848 0.429
�0.400 0.04249 0.385
�0.397 0.05386 0.343
�0.445 0.05423 0.421
�0.414 0.05350 0.378
�0.403 0.04750 0.384
�0.483 0.04995 0.442
�0.360 0.04359 0.337
�0.420 0.05311 0.395
�0.353 0.04281 0.341
�0.368 0.04057 0.351
�0.435 0.05248 0.395
�0.389 0.04124 0.360



Fig. 3. The effort needed to reduce the average trip length as a percentage of maximum entropy.

Fig. 4. Regional variability in the change in entropy components. The change in the destination component is excluded due to very small values which
occur because it is easier to adjust origins than destinations.
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not tell the whole story. While Fig. 4 suggests that the C

component is larger than the O component of entropy, this
also means that the O component is larger for sun-belt cit-
ies than rust-belt cities, because otherwise the effort metric
would be positive for southwestern regions. Since C is lar-
ger for the southwest, O has to be larger as well to compen-
sate for C in the estimation of entropy.

Insights into the workings of the system are gained by
taking a detailed look at the trip distributions before and
after the reduction. What does the model do to reduce
the average trip length in the easiest way possible? Which
trip lengths are reshuffled to bring the distribution in line
with the new target commute? Fig. 5 illustrates the trip dis-
tribution for Pittsburgh before and after the reduction, and
the difference between them. For the observed average trip
length of 8.28 miles, the trip distribution is the familiar
curve tracing out the distance-decay effect. The trip distri-
bution for the reduced average trip length of 8.03 miles also



Fig. 5. Comparison of observed and reduced trip length distributions for Pittsburgh. Horizontal lines indicate fewer commuters and crosshatches indicate
more commuters in the reduced work travel pattern.
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encapsulates the deterrent effect but now extremely short
trips are not the dominant type. Further, the curve of the
reduced trip distribution is steeper and plateaus earlier
than the more gradual decline of the observed trip distribu-
tion. Fig. 5 also suggests that in order to reduce the com-
mute in line with the given target, the model reduces the
Table 3
Comparison of longest average trip length for cumulative percentages of com

MSA Cumulative % of commuters: 100 % cha

Observed longest trip
length (miles)

Reduced longest trip
length (miles)

Atlanta 121 82 �32.2
Baltimore 90 82 �8.8
Boise 110 87 �20.9
Boston 56 57 1.7
Charlotte 51 55 7.8
Cincinnati 105 82 �21.9
Cleveland 107 82 �23.3
Columbus 60 70 16.6
Denver 102 92 �9.8
Las Vegas 123 115 �6.5
Memphis 51 59 15.6
Miami 53 59 11.3
Milwaukee 74 71 �4.0
Minneapolis 128 96 �25.0
Omaha 53 57 7.5
Philadelphia 129 93 �27.9
Phoenix 121 110 �9.0
Pittsburgh 87 77 �11.4
Portland 71 62 �12.6
Rochester 86 80 �6.9
Sacramento 103 101 �1.9
St. Louis 79 81 2.5
San Antonio 57 67 17.5
San Diego 73 73 0.0
Seattle 132 100 �24.2
Wichita 87 79 �9.2
number of extremely short trips and extremely long trips.
In general, there is a preponderance of shorter trips, where
the small reductions of longer trip lengths taken over a
longer range compensates for the decrease in extremely
short trips to result in lower overall commuting for the
given region. The result of this is the tightening of the trip
muters

nge Cumulative % of commuters: 95 % change

Observed longest trip
length (miles)

Observed longest trip
length (miles)

3 29.5 26 �11.86
9 24.5 21 �14.29
1 23 21 �8.70
9 19.5 15.5 �20.51
4 18 16 �11.11
0 22 19 �13.64
6 23.5 20.5 �12.77
7 22.5 19.5 �13.33
0 23 19 �17.39
0 16 15.5 �3.13
9 18 16.5 �8.33
2 18.5 16.5 �10.81
5 22 19 �13.64
0 28.5 23.5 �17.54
5 14.5 13.5 �6.90
1 25.5 20.5 �19.61
9 46 29.5 �35.87
9 24.5 20 �18.37
8 16.5 14.5 �12.12
8 27 22.5 �16.67
4 24.5 21 �14.29
3 25 21.5 �14.00
4 21 18.5 �11.90
0 27.5 21.5 �21.82
4 27 22.5 �16.67
0 23.5 20 �14.89
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distribution around the reduced average trip length made
possible by decreasing both tails within the imposed out-
flow and inflow constraints.

The trip length distributions provide another way to
investigate the connections between spatial structure (land-
use), commuting and energy consumption. As opposed to
the O–D matrix which aggregates work trips by origins or
destinations, the trip length distributions tally commutes
by their distances. Thus, by comparing the distances at which
95% and 100% of the commuters6 move through a given
region for the observed and reduced work travel patterns,
we can identify those places where reduction of extreme com-
mutes is easier and by extension where it is easier to meet
energy consumption reduction goals. Cities where a reduc-
tion in the longest trip length for all commuters is larger than
the reduction in the longest trip length for 95% of travelers
are more flexible in their ability to change their home/work
dyad. Conversely, if the reduction of the longest trip length
for 95% of workers is larger than the decrease for the trip
length for all commuters then the distribution of home and
work places in these city types is less friendly toward extreme
commute reduction (akin to the ‘‘long valley” effect). Table 3
provides the trip length frequency for all 26 cities. As an
example consider the MSA of St. Louis, Pittsburgh, Minne-
apolis and San Diego. In Pittsburgh for the observed case, it
takes 87 miles for all commuters to move through the city,
and only 24.5 miles for 95% of them. After the reduction,
these distances decrease to 77 and 20 miles, respectively. In
the case of all commuters, the longest distance drops by
11.5%, and the longest distance for 95% of the commuters
decreases by 18.4%. For St. Louis, the intrinsic spatial struc-
ture is even more pronounced, because the longest distance
actually increases by 2.5% from 79 to 81 miles, although
the longest trip made by 95% of the commuters decreases
by 14% from 25 to 21.5 miles. The long valley effect is evident
when these cities are compared to Minneapolis and San
Diego. The decrease in the longest distance for all commuters
is larger than the decrease for trips made by 95% of the com-
muters. Thus, Minneapolis and San Diego have more free-
dom to attain the target because their spatial structure
lacks the ‘‘long valley” effect.

6. Discussion and conclusions

If the goal of land-use related modeling is to examine the
relationships between spatial structure, transportation, and
energy consumption and evaluate changes in commuting
behavior as a result of the realignment of the work/resi-
dence dyad, then previously developed ‘‘excess commut-
ing” approaches may not address these concerns
adequately. Analyzing the range of most probable realign-
ments of the work/home dyad, instead of simply the
extremes, is essential. Evaluations of attainable reductions
6 The 5% difference tries to capture the increase in the number of
extreme commuters. For some urban areas, reduction of extreme
commuting may be easier than for others.
in metropolitan average trip lengths are now possible. The
proposed entropy maximization version of the spatial
interaction model provides analysts with the ability to sim-
ulate various policy scenarios given land-use and energy
consumption goals as inputs.

The current approach exploits the analytical features of
the trip distribution model to determine the amount of
effort needed to reduce average trip lengths across a sample
of US cities. While our derivation and discussion has made
a good deal of sense in terms of the logic of the model and
arguably greatly improves over the linear programming
solution, we are well aware of the needs for further refine-
ment. The range of extensions to the current model should
incorporate behavioral adjustments such as possible
changes to car ownership (more fuel efficient and hybrid
vehicles), lower overall discretionary travel levels, and
modal shift. The popular view that a modest across the
board reduction in vehicle miles (and consequently lower
gas usage) could potentially reduce excess demand to the
extent that gas would again come back to moderate price
levels raises many more questions about sustainability that
are beyond the immediate scope of this paper. Addition-
ally, the model should disaggregate workers by job types.
The model presented in this paper assumes that work trips
can be rearranged without regard to workers job skills.
Clearly, the affect on work trip lengths will be different
when construction workers cannot change locations with
university professors, for example. We are well aware that
an aggregate analysis misses some of the finer details of
commute realignment, but since our focus is on developing
a framework for reductions in average trip lengths, the
assumption of job homogeneity is reasonable. Further-
more, intra-metropolitan variations in the effort needed
to reduce work trip lengths may be uncovered by spatially
disaggregating the entropy statistics (refer to Niedzielski,
2006 for the approach).

While we do not yet have these factors embedded in a
comprehensive way, we can at least lay out the steps that
we need to perform to push this analysis to further levels of
realism. A more refined and accurate model needs to address
network link performance, equilibrium network assignment
and model fuel consumption as a function of various trip
length shares (Naess and Sandberg, 1996; Scott et al., 1997;
Southworth, 2001) as well as disaggregate workers by their
occupation types (see O’Kelly and Lee, 2005, for employ-
ment disaggregated excess commuting metrics). We are
actively performing these computations in detail for particu-
lar cases. Still, the contribution of this paper is the quantifi-
cation of the spatial variation in the spatial structure based
effort needed to reduce work travel distance, which is the first
step toward a deeper understanding of the complex processes
involved in meeting lower energy goals.
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